メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

高校数学の解説や公務員試験問題の解説、データサイエンスについての記事を書いていきます!

「データサイエンス×教育」に興味があり、日々勉学に励んでいます。

少しでも役に立つ情報の発信をしていきますのでぜひ読んでください。

また、同志からのお声がけはとても励みになります。ぜひ、コメントやメール、SNS等でご連絡ください!
カテゴリー
統計学初学者サポートこちらをクリック

【三角比】『余角・補角の公式』例題と解説

目次

データアナリストへの道

少し数字に強い理系大学卒から駆け出しデータアナリストになるまでに、実際に読んだ50冊以上の本から厳選して、基本的な理論から実践的スキルまでを身につけられるようにデータ分析初学者向けにまとめました。>>記事を読む

余角・補角の公式

余角の公式
\(\sin(90^{\circ}-\theta)=\cos\theta\)
\(\cos(90^{\circ}-\theta)=\sin\theta\)
\(\tan(90^{\circ}-\theta)=\displaystyle\frac{1}{\tan\theta}\)

補角の公式
\(\sin(180^{\circ}-\theta)=\sin\theta\)
\(\cos(180^{\circ}-\theta)=-\cos\theta\)
\(\tan(180^{\circ}-\theta)=-\tan\theta\)

余角・補角(問題)

次の問いに答えよ。

(1) \(\sin(90^{\circ}-\theta)-\sin(180^{\circ}-\theta)+\cos(90^{\circ}-\theta)+\cos(180^{\circ}-\theta)\)

(2)
(ア) \(\sin70^{\circ}\), \(\cos110^{\circ}\) を\(45^{\circ}\) 以下の三角比で表せ。
(イ) \(\sin20^{\circ}\cos110^{\circ}+\sin70^{\circ}\cos160^{\circ}\) を簡単にせよ。

余角・補角(解説)

(1) \(\sin(90^{\circ}-\theta)-\sin(180^{\circ}-\theta)+\cos(90^{\circ}-\theta)+\cos(180^{\circ}-\theta)\)

余角・補角の公式より
\(\sin(90^{\circ}-\theta)=\cos\theta\)
\(\sin(180^{\circ}-\theta)=\sin\theta\)
\(\cos(90^{\circ}-\theta)=\sin\theta\)
\(\cos(180^{\circ}-\theta)=-\cos\theta\)

\(=\cos\theta-\sin\theta+\sin\theta-\cos\theta\)
\(=0\)

(2)
(ア) \(\sin70^{\circ}\), \(\cos110^{\circ}\) を\(45^{\circ}\) 以下の三角比で表せ。

\(\sin(90^{\circ}-\theta)=\cos\theta\) より

\(\sin70^{\circ}\)
\(=\sin(90^{\circ}-20^{\circ})=\cos20^{\circ}\)

\(\cos(180^{\circ}-\theta)=-\cos\theta\) より

\(\cos110^{\circ}\)
\(=\cos(180^{\circ}-70^{\circ})=-\cos70^{\circ}\)

(イ) \(\sin20^{\circ}\cos110^{\circ}+\sin70^{\circ}\cos160^{\circ}\) を簡単にせよ。

角度がバラバラなので、余角・補角の公式を用いて揃えます。

余角・補角の公式より
\(\cos110^{\circ}=\cos(180^{\circ}-70^{\circ})=-\cos70^{\circ}\)
\(\sin70^{\circ}=\sin(90^{\circ}-20^{\circ})=\cos20^{\circ}\)
\(\cos160^{\circ}=\cos(180^{\circ}-20^{\circ})=-\cos20^{\circ}\)

\(=-\sin20^{\circ}\cos70^{\circ}-\cos20^{\circ}\cos20^{\circ}\)

\(\cos70^{\circ}=\cos(90^{\circ}-20^{\circ})=\sin20^{\circ}\) より

\(=-\sin20^{\circ}\sin20^{\circ}-\cos20^{\circ}\cos20^{\circ}\)
\(=-(\sin^2 20^{\circ}+\cos^2 20^{\circ})\)

三角比の相互関係より
\(\sin^2\theta+\cos^2\theta=1\)

\(=-1\)

おわりに

さいごまで読んでいただきありがとうございました!

このブログは統計学を学びたい学生/社会人向けに記事を書いています。

【最新】こちらの記事がおすすめ!

>>

  • URLをコピーしました!
目次