メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

高校数学の解説や公務員試験問題の解説、データサイエンスについての記事を書いていきます!

「データサイエンス×教育」に興味があり、日々勉学に励んでいます。

少しでも役に立つ情報の発信をしていきますのでぜひ読んでください。

また、同志からのお声がけはとても励みになります。ぜひ、コメントやメール、SNS等でご連絡ください!
カテゴリー
統計学初学者サポートこちらをクリック

【積分法】計算をサボる最強ツール『King Property(キングプロパティ)』

King Property

\(\displaystyle\int_a^b f(x)dx=\int_a^b f(a+b-x) dx\)

入試でもたまに出題される定積分の性質です。導出も含めてそこまで難しい性質ではないのでぜひ覚えておきましょう!

使わなくても解ける、けど使えば別の未来が開ける。

by Math kit 運営 yu-to

使わずに無理やり計算すれば大体解けます。ただ使えば、短縮された分、別の問題に時間がかけられるので未来(結果)が変わると思います!

記事が見つかりませんでした。

目次

データアナリストへの道

少し数字に強い理系大学卒から駆け出しデータアナリストになるまでに、実際に読んだ50冊以上の本から厳選して、基本的な理論から実践的スキルまでを身につけられるようにデータ分析初学者向けにまとめました。>>記事を読む

King Property の導出

\(\displaystyle\int_a^b f(x)dx=\int_a^b f(a+b-x) dx\)

いくつか導出方法がありますが、今回は右辺から左辺を示すやり方を紹介していきます。

導出)

\(\displaystyle\int_a^b f(a+b-x) dx\)

 \(u=a+b-x\) とおくと \(du=-dx\)

\(x\):\(a\) \(\longrightarrow\) \(b\)
\(u\):\(b\) \(\longrightarrow\) \(a\)

変数を変換する場合は、積分区間も変換されることを忘れずに!

\(=\displaystyle\int_b^a f(u) (-du)\)

\(=\displaystyle\int_a^b f(u)du\)

定積分の変数に意味はあまりないので、\(u\) を \(x\) と捉えても問題はない!

\(u\) を \(x\) と置いて、

\(=\displaystyle\int_a^b f(x)dx\)

King Property の例題

例題 1)三角関数の定積分

\(I=\displaystyle\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} dx\) を求めよ。

積分区間の下端が \(0\) である場合は、

 \(\displaystyle\int_0^a f(x) dx=\int_0^a f(a-x) dx\)

を使っていきます。

解説)

King Property より

\(I=\displaystyle\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} dx\)

 \(=\displaystyle\int_0^{\frac{\pi}{2}}\frac{\sin(\frac{\pi}{2}-x)}{\sin(\frac{\pi}{2}-x)+\cos(\frac{\pi}{2}-x)} dx\)

加法定理より

 \(=\displaystyle\int_0^{\frac{\pi}{2}}\frac{\cos x}{\cos x+\sin x} dx\)

\(2I=I+I\) より

\(2I=\displaystyle\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x}dx+\int_0^{\frac{\pi}{2}}\frac{\cos x}{\cos x+\sin x}dx\)

 \(=\displaystyle\int_0^{\frac{\pi}{2}} 1 dx\)

 \(=\big[x\big]_0^{\frac{\pi}{2}}\)

 \(=\displaystyle\frac{\pi}{2}\)

よって、\(I=\displaystyle\frac{\pi}{4}\)

例題 2)指数関数の定積分

\(I=\displaystyle\int_{-1}^1 \frac{1}{1+e^{x}} dx\) を求めよ。

解説)

King Property より

\(I=\displaystyle\int_{-1}^1 \frac{1}{1+e^{x}} dx\)

 \(=\displaystyle\int_{-1}^1 \frac{1}{1+e^{-x}} dx\)

 \(=\displaystyle\int_{-1}^1 \frac{1}{1+\frac{1}{e^{x}}} dx\)

 \(=\displaystyle\int_{-1}^1 \frac{e^x}{e^x+1} dx\)

\(2I=I+I\) より

\(2I=\displaystyle\int_{-1}^1\frac{1}{1+e^x}dx+\int_{-1}^1 \frac{e^x}{e^x+1}dx\)

 \(=\displaystyle\int_{-1}^1 1dx\)

 \(=[x]_{-1}^1=2\)

\(I=1\)

おわりに

さいごまで読んでいただきありがとうございました!

このブログは統計学を学びたい学生/社会人向けに記事を書いています。

【最新】こちらの記事がおすすめ!

>>

  • URLをコピーしました!
目次