メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

高校数学の解説や公務員試験問題の解説、データサイエンスについての記事を書いていきます!

「データサイエンス×教育」に興味があり、日々勉学に励んでいます。

少しでも役に立つ情報の発信をしていきますのでぜひ読んでください。

また、同志からのお声がけはとても励みになります。ぜひ、コメントやメール、SNS等でご連絡ください!
カテゴリー
統計学初学者サポートこちらをクリック

【二次方程式】『判別式』グラフの概形から \(x\) 軸に接するときの \(k\) の値を求める問題

目次

データアナリストへの道

少し数字に強い理系大学卒から駆け出しデータアナリストになるまでに、実際に読んだ50冊以上の本から厳選して、基本的な理論から実践的スキルまでを身につけられるようにデータ分析初学者向けにまとめました。>>記事を読む

二次関数が \(x\) 軸と接する問題

今回は、グラフが \(x\) 軸に接するときの \(k\) の値を求める問題です。

グラフが \(x\) 軸に接するとき、以下のように図示することができます。

f:id:smohisano:20210617175819p:plain

このときにどんな性質を持つのか?というのがポイントとなります。

このことを理解するためには、「判別式の仕組みを理解すること」と「グラフを描くこと」が必要です。

判別式の仕組み

判別式

\(ax^2+bx+c=0\) の判別式を \(D\) とおくとき、

\(D=b^2-4ac>0\) \(longrightarrow\) 実数解が \(2\) 個
\(D=b^2-4ac=0\) \(longrightarrow\) 実数解が \(1\) 個
\(D=b^2-4ac<0\) \(longrightarrow\) 実数解が \(0\) 個

グラフで表す

「グラフが \(x\) 軸に接する」を言い換えて、グラフで表しましょう。

STEP1 「\(x\) 軸に接する」を言い換える

「\(x\) 軸に接する」

\(\longleftrightarrow\) \(x\) 軸との交点が \(1\) 個

\(\longleftrightarrow\) \(y=0\) のとき実数解が \(1\) 個

STEP2 グラフで表す

「\(x\) 軸に接する」とは、「\(y=0\) のとき実数解が \(1\) 個」

ということを踏まえてグラフの概形を描く。

f:id:smohisano:20210617175819p:plain
※ 頂点がわからなくても図のようなイメージを持てれば良いです。

二次関数のグラフの描き方は以下の記事をチェック

判別式の問題

\(2\) 次関数 \(y=x^2+2(2-k)x+k\) のグラフが \(x\) 軸に接するように、定数 \(k\) の値を求めよ。

答案の例

\(x^2+2(2-k)x+k=0\) の判別式を \(D\) とおくと、

\(D=4(2-k)^2-4k=0\)

\(=16-16k+4k^2-4k=0\)
\(=4k^2-20k+16=0\)
\(=k^2-5k+4=0\)
\((k-4)(k-1)=0\)

 \(k=1\), \(4\)

解説

「\(y=x^2+2(2-k)x+k\) のグラフが \(x\) 軸に接するように」より、

グラフの概形を描くと、

f:id:smohisano:20210617175819p:plain

\(y=0\) にし、\(x\) 軸との交点について考える。

\(x^2+2(2-k)x+k=0\)

\(x\) 軸と接しているので、実数解は \(1\) 個となる。

\(x^2+2(2-k)x+k=0\) の判別式を \(D\) とおくと、

\(D=4(2-k)^2-4k=0\)

\(=16-16k+4k^2-4k=0\)
\(=4k^2-20k+16=0\)
\(=k^2-5k+4=0\)
\((k-4)(k-1)=0\)

 \(k=1\), \(4\)

おわりに

今回は、グラフが \(x\) 軸に接するときの \(k\) の値を求める問題でした。

問いの文章を言い換えて、グラフの概形が描けると判別式を使用するタミングが見えてくると思います。

さいごまで読んでいただきありがとうございました!

このブログは統計学を学びたい学生/社会人向けに記事を書いています。

【最新】こちらの記事がおすすめ!

>>

  • URLをコピーしました!
目次