二次関数が 軸と接する問題
今回は、グラフが
グラフが

このときにどんな性質を持つのか?というのがポイントとなります。
このことを理解するためには、「判別式の仕組みを理解すること」と「グラフを描くこと」が必要です。
判別式の仕組み
判別式
↓判別式の仕組みはこちら
グラフで表す
「グラフが
STEP1 「
「
STEP2 グラフで表す
「
ということを踏まえてグラフの概形を描く。
※ 頂点がわからなくても図のようなイメージを持てれば良いです。
二次関数のグラフの描き方は以下の記事をチェック
判別式の問題
>>詳細はこちらから
答案の例
解説
「
グラフの概形を描くと、

おわりに
今回は、グラフが
問いの文章を言い換えて、グラフの概形が描けると判別式を使用するタミングが見えてくると思います。
さいごまで読んでいただきありがとうございました!
『統計の扉』で書いている記事
- 高校数学の解説
- 公務員試験の数学
- 統計学(統計検定2級レベル)
ぜひご覧ください!
数学でお困りの方は、コメントやXでご連絡ください。(Xはこちら)
私自身、数学が得意になれたのはただ運が良かったんだと思っています。たまたま親が通塾させることに積極的だったり、友達が入るって理由でそろばんに入れたり、他の科目が壊滅的だったおかげで数学が(相対的に)得意だと勘違いできたり。
”たまたま”得意になれたこの恩を、今数学の学習に困っている人に還元できたらなと思っています。お金は取りません。できる限り(何百人から連絡が来たら難しいかもですが…)真摯に向き合おうと思っていますのでオアシスだと思ってご連絡ください。