メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

高校数学の解説や公務員試験問題の解説、データサイエンスについての記事を書いていきます!

「データサイエンス×教育」に興味があり、日々勉学に励んでいます。

少しでも役に立つ情報の発信をしていきますのでぜひ読んでください。

また、同志からのお声がけはとても励みになります。ぜひ、コメントやメール、SNS等でご連絡ください!
カテゴリー
統計学初学者サポートこちらをクリック

【対数関数】底の変換公式|対数の計算

目次

データアナリストへの道

少し数字に強い理系大学卒から駆け出しデータアナリストになるまでに、実際に読んだ50冊以上の本から厳選して、基本的な理論から実践的スキルまでを身につけられるようにデータ分析初学者向けにまとめました。>>記事を読む

底の変換公式

↓今回扱う例題です。

 \((\log_2 9+\log_4 3)\log_3 4\)

それぞれの対数を見てみると、

 \(\log_2 9\):底 \(2\)
 \(\log_4 3\):底 \(4\)
 \(\log_3 4\):底 \(3\)

底がバラバラですね。対数は、底が一致していないと計算することができません。では、どうすれば底を一致させられるのでしょうか?ここで使用するのが、「底の変換公式」です。

では、公式を詳しく見ていきましょう!

底の変換公式

底の変換公式

 \(\log_a b=\displaystyle\frac{\log_c b}{\log_c a}\)

今回の問題 \((\log_2 9+\log_4 3)\log_3 4\) は、底をどれに合わせれば良いのか?候補は、\(2\), \(4\), \(3\) があるが、基本的にどれに合わせても答えは導かれます。しかし、一番数字が小さいものを底にすれば計算が楽になるでしょう。

底の変換公式の問題

次の式を簡単にせよ。

\((\log_2 9+\log_4 3)\log_3 4\)

答案の例

\(\log_4 3\) について
\(\log_4 3=\displaystyle\frac{\log_2 3}{\log_2 4}\) \(=\displaystyle\frac{\log_2 3}{2}\)

\(\log_3 4\) について
\(\log_3 4=\displaystyle\frac{\log_2 4}{\log_2 3} \) \(=\displaystyle\frac{2}{\log_2 3}\)

\((\log_2 9+\log_4 3)\log_3 4\)
\(=\big(\log_2 {3^2}+\) \(\displaystyle\frac{\log_2 3}{2}\big)\) \(\displaystyle\frac{2}{\log_2 3}\)
\(=2\log_2 3\times \displaystyle\frac{2}{\log_2 3}+\displaystyle\frac{\log_2 3}{2}\times \displaystyle\frac{2}{\log_2 3}=4\)

解説

底の変換公式より、底を \(2\) 揃える。

\(\log_4 3\) について
\(\log_4 3=\displaystyle\frac{\log_2 3}{\log_2 4}\) \(=\displaystyle\frac{\log_2 3}{2}\)

\(\log_3 4\) について
\(\log_3 4=\displaystyle\frac{\log_2 4}{\log_2 3} \) \(=\displaystyle\frac{2}{\log_2 3}\)

変換したものを与式に当てはめる

\((\log_2 9+\log_4 3)\log_3 4\)
\(=\big(\log_2 {3^2}+\) \(\displaystyle\frac{\log_2 3}{2}\)\(\big)\) \(\displaystyle\frac{2}{\log_2 3}\)
\(=2\log_2 3\times \displaystyle\frac{2}{\log_2 3}+\displaystyle\frac{\log_2 3}{2}\times \displaystyle\frac{2}{\log_2 3}=4\)

おわりに

今回は、底の変換公式を用いた計算問題でした。

底の変換公式

\(\log_a b=\displaystyle\frac{\log_c b}{\log_c a}\)

底の変換公式を活用して底を揃えてから計算しましょう。また、他にも対数独特な公式が存在しているため、どのタイミングでどの公式を使えるのかということを見極める必要があります。

他の対数の公式はこちらで確認してみてください。

あわせて読みたい
【対数関数】『対数方程式』対数が含まれた方程式 対数方程式 今回は対数が含まれた方程式の解き方です! 対数の公式を駆使するのが難しいところですが、しっかりと公式を覚えて、最初のうちは公式を見ながら式形できる...

さいごまで読んでいただきありがとうございました!

このブログは統計学を学びたい学生/社会人向けに記事を書いています。

【最新】こちらの記事がおすすめ!

>>

  • URLをコピーしました!
目次