メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

高校数学の解説や公務員試験問題の解説、データサイエンスについての記事を書いていきます!

「データサイエンス×教育」に興味があり、日々勉学に励んでいます。

少しでも役に立つ情報の発信をしていきますのでぜひ読んでください。

また、同志からのお声がけはとても励みになります。ぜひ、コメントやメール、SNS等でご連絡ください!
カテゴリー

【微分】『接線の方程式』接線の方程式を求める公式を解説

  • URLをコピーしました!

接線の方程式

接線を求めるために必要な要素は、接点傾きです。

接点と傾きは、問いに与えられている時もあれば与えられていない時もあります。

 接点が与えられていない時
→ 接点を文字に置く。

 傾きが与えられていない時
→ 微分することにより求める。

接線の方程式を求めるための公式

y=f(x) 上の点 (t, f(t)) における接線の方程式は、
 yf(t)=f(t)(xt) (\(f'(t):接線の傾き)

接線の傾きを求める手順
① f(x) を微分をする。(f(x) を求める)
② f(x)x 座標に接点の x 座標を代入する。
③ yf(t)=f(t)(xt) に代入する

接線の方程式(問題)

(2, 2) から曲線 y=13x3x に引いた接線の方程式を求めよ。

答案の例

接点 (t, 13t3t) とおき、さらに y=f(x) とおく。

f(x)=x21
f(t)=t21

公式に代入すると、

y(13t3t)=(t21)(xt)
y(13t3t)=(t21)x(t21)t
y(13t3t)=(t21)xt3+t
y=(t21)xt3+t+13t3t
y=(t21)x23t3

ここで、接線 ※ は点 (2, 2) を通るので、

2=(t21)×223t3
2=2t2223t3
0=2t223t3
23t3+2t2=0
23t32t2=0
2t36t2=0
2t2(t3)=0
t=0, 3

t=0 のとき y=x
t=3 のとき y=8x18

解説

問題文に接点が明記されていないため、接点を文字に置く必要があります。

接点は、関数 y を通るので、接点 (t, 13t3t) とおき、さらに y=f(x) とおく。

f(x) より傾きを求める

f(x)=x21
f(t)=t21 ← 傾き

接点と傾きを求めることができたので、公式に当てはめて接線の方程式を求める。
※ 全て t で表されてるので、扱いづらいがそのまま公式に当てはめる。

接点:(t, 13t3t)
傾き:t21

y(13t3t)=(t21)(xt)
y(13t3t)=(t21)x(t21)t
y(13t3t)=(t21)xt3+t
y=(t21)xt3+t+13t3t
y=(t21)x23t3

ここで、接線 ※ は点 (2, 2) を通るので、

2=(t21)×223t3
2=2t2223t3
0=2t223t3
23t3+2t2=0
23t32t2=0
2t36t2=0
2t2(t3)=0
t=0, 3

t=0 のとき ※ より接線は、y=x となる
t=3 のとき ※ より接線は、y=8x18 となる

おわりに

今回は、微分で接線の方程式を求める方法についてでした。

接線の方程式に必要なのは、接点傾きです。

接点:問題にない時は、文字でおく。
傾き:微分した式に接点の 座標を代入する。

接点が与えられているかどうか、傾きが与えられているかどうかは問題文をしっかりと読んで判断しましょう。

さいごまで読んでいただきありがとうございました!

『統計の扉』で書いている記事

  • 高校数学の解説
  • 公務員試験の数学
  • 統計学(統計検定2級レベル)

ぜひご覧ください!

数学でお困りの方は、コメントやXでご連絡ください。(Xはこちら

私自身、数学が得意になれたのはただ運が良かったんだと思っています。たまたま親が通塾させることに積極的だったり、友達が入るって理由でそろばんに入れたり、他の科目が壊滅的だったおかげで数学が(相対的に)得意だと勘違いできたり。

”たまたま”得意になれたこの恩を、今数学の学習に困っている人に還元できたらなと思っています。お金は取りません。できる限り(何百人から連絡が来たら難しいかもですが…)真摯に向き合おうと思っていますのでオアシスだと思ってご連絡ください。

  • URLをコピーしました!