メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

高校数学の解説や公務員試験問題の解説、データサイエンスについての記事を書いていきます!

「データサイエンス×教育」に興味があり、日々勉学に励んでいます。

少しでも役に立つ情報の発信をしていきますのでぜひ読んでください。

また、同志からのお声がけはとても励みになります。ぜひ、コメントやメール、SNS等でご連絡ください!
カテゴリー

【ロピタルの定理】『極限の裏技』大学受験にも使える?

  • URLをコピーしました!

ロピタルの定理

 limxaf(x)g(x)=limxaf(x)g(x)

※本当はもう少し複雑な定理です。正しくは下の内容を読んでください。

記事が見つかりませんでした。

ロピタルの定理って高校数学に使えるの?

ロピタルの定理は極限を求める際に、分母分子を微分したあとに極限を求めても値は変わらないことを意味しています。理系大学生なら誰しもが知ってるかなり有名な定理です。

さて、こちらは大学受験の際にも使ってもいいのか?ということについて考えていこうと思うのですが、

結論から言うと、大学によって採点基準が様々なため、正直なんとも言えません。

でもこれだと、答えになっていないので、しっかりとした答えを考えていこうと思います。

入試の採点は、言わずもがなですが数学のプロが行います。そんなプロたちが「高校数学の範囲じゃない定理を使うなんて生意気だ!バツにしてやろう。」という思考になるとは考えにくいですよね。つまり、高校数学の範囲を超えた内容を活用して、バツもしくは減点されることはないと言えるでしょう。しかし、使用する場合には注意しなければいけないポイントがあります。それは、適用条件がある定理・法則は確認をした上で使用する必要がある。ということです。

例えば、相加・相乗平均 「a+b2ab」は、「a0, b0」が条件となる。このことを確認せずに使用すると減点されるでしょう。このように、数学の定理・法則には、それが活用されるための条件が設定される場合があります。ロピタルの定理も同様に使用するための条件が設定されています。

ロピタルの定理の詳細

上部で述べたロピタルの定理は本当のロピタル定理ではありません。本当のロピタルは以下のものをまとめてそう呼びます。では確認していきましょう!

ロピタルの定理

① 関数 f(x), g(x)x=a を含むある区間 I で連続である。

② 区間 Ixa で微分可能かつ g(x)0 である。

③ limxaf(x)=limxa=0

または ± (00 または の不定形 ) である。

④ limxaf(x)g(x)=A (A) が存在する。

① 〜 ④ を満たすとき limxaf(x)g(x)=limxaf(x)g(x)=A

ロピタルの定理の問題と解説

問題)

(1) limx0sinxx

(2) limx0xsinxx3

(3) limx0exexsinx

解説)

(1) limx0sinxx

 limx0sinxx=limx0(sinx)x
      =limx0cosx1=1

(2) limx0xsinxx3

 limx0(xsinx)(x3)=limx01cosx3x2
   =limx0(1cosx)(3x2)=limx0sinx6x
   =limx0(sinx)(6x)=limx0cosx6=16

(3) limx0exexsinx

 limx0exexsinx=limx0(exex)(sinx)
   =limx0ex+excosx=e0+e01=2

おわりに

さいごまで読んでいただきありがとうございました!

『統計の扉』で書いている記事

  • 高校数学の解説
  • 公務員試験の数学
  • 統計学(統計検定2級レベル)

ぜひご覧ください!

数学でお困りの方は、コメントやXでご連絡ください。(Xはこちら

私自身、数学が得意になれたのはただ運が良かったんだと思っています。たまたま親が通塾させることに積極的だったり、友達が入るって理由でそろばんに入れたり、他の科目が壊滅的だったおかげで数学が(相対的に)得意だと勘違いできたり。

”たまたま”得意になれたこの恩を、今数学の学習に困っている人に還元できたらなと思っています。お金は取りません。できる限り(何百人から連絡が来たら難しいかもですが…)真摯に向き合おうと思っていますのでオアシスだと思ってご連絡ください。

  • URLをコピーしました!