メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

高校数学の解説や公務員試験問題の解説、データサイエンスについての記事を書いていきます!

「データサイエンス×教育」に興味があり、日々勉学に励んでいます。

少しでも役に立つ情報の発信をしていきますのでぜひ読んでください。

また、同志からのお声がけはとても励みになります。ぜひ、コメントやメール、SNS等でご連絡ください!
カテゴリー
統計学初学者サポートこちらをクリック

【空間ベクトル】等式を満たす点の位置

目次

データアナリストへの道

少し数字に強い理系大学卒から駆け出しデータアナリストになるまでに、実際に読んだ50冊以上の本から厳選して、基本的な理論から実践的スキルまでを身につけられるようにデータ分析初学者向けにまとめました。>>記事を読む

等式を満たす点の位置

今回は空間ベクトルの問題です!

空間図形になると難しく感じるかもしれませんが、考え方は平面と同様ですし、適宜空間図形を切り取れば平面図形として見ることができます。例題と解説を用意してるので解いてみてください。

等式を満たす点の位置(問題)

四面体 \(ABCD\) に関し、次の等式を満たす点 \(P\) はどのような位置にある点か。

\(\overrightarrow{AP}+3\overrightarrow{BP}+2\overrightarrow{CP}+6\overrightarrow{DP}=\overrightarrow{0}\)

解説

\(\overrightarrow{AP}+3\overrightarrow{BP}+2\overrightarrow{CP}+6\overrightarrow{DP}=\overrightarrow{0}\)

\(\overrightarrow{AP}+3(\overrightarrow{AP}-\overrightarrow{AB})+2(\overrightarrow{AP}-\overrightarrow{AC})\)

\(+6(\overrightarrow{AP}-\overrightarrow{AD})=\overrightarrow{0}\)

\(\overrightarrow{AP}+3\overrightarrow{AP}-3\overrightarrow{AB}+2\overrightarrow{AP}-2\overrightarrow{AC}\)

\(+6\overrightarrow{AP}-6\overrightarrow{AD}=\overrightarrow{0}\)

\(12\overrightarrow{AP}-3\overrightarrow{AB}-2\overrightarrow{AC}-6\overrightarrow{AD}=\overrightarrow{0}\)

\(12\overrightarrow{AP}=3\overrightarrow{AB}+2\overrightarrow{AC}+6\overrightarrow{AD}\)

\(\overrightarrow{AP}=\displaystyle\frac{1}{12}(3\overrightarrow{AB}+2\overrightarrow{AC}+6\overrightarrow{AD})\)

この形を目指す

\(\triangle{ABC}\) において、線分 \(BC\) を \(m:n\) に内分する点を \(P\) とするとき、

\(\overrightarrow{AP}=\displaystyle\frac{n}{m+n}\overrightarrow{AB}+\frac{m}{m+n}\overrightarrow{AC}\)

\(\overrightarrow{AP}=\displaystyle\frac{1}{12}\left\{5\cdot \left(\frac{3\overrightarrow{AB}+2\overrightarrow{AC}}{5}\right)+6\overrightarrow{AD}\right\}\)

\(\overrightarrow{AE}=\displaystyle\frac{3\overrightarrow{AB}+2\overrightarrow{AC}}{5}\) とおくと、

\(\overrightarrow{AP}=\displaystyle\frac{1}{12}\left\{5\overrightarrow{AE}+6\overrightarrow{AD}\right\}\)

\(\overrightarrow{AP}=\displaystyle\frac{1}{12}\left\{11\cdot \left(\frac{5\overrightarrow{AE}+6\overrightarrow{AD}}{11}\right)\right\}\)

\(\overrightarrow{AF}=\displaystyle\frac{5\overrightarrow{AE}+6\overrightarrow{AD}}{11}\) とおくと、

\(\overrightarrow{AP}=\displaystyle\frac{11}{12}\overrightarrow{AF}\)

図を描く手順

手順①

\(\overrightarrow{AE}=\displaystyle\frac{3\overrightarrow{AB}+2\overrightarrow{AC}}{5}\)

三角形 \(ABC\) に着目して平面図形として見る。

手順②

\(\overrightarrow{AF}=\displaystyle\frac{5\overrightarrow{AE}+6\overrightarrow{AD}}{11}\)

次に三角形 \(AED\) に着目する。

手順③

\(\overrightarrow{AP}=\displaystyle\frac{11}{12}\overrightarrow{AF}\)

手順①, ②  より導いた点 \(F\)より、以下のように描かれる。

以上より、点 \(P\) は線分 \(BC\) を \(2:3\) に内分する点を点 \(E\) とし、線分 \(ED\) を \(5:6\) に内分する点を点 \(F\) とするとき、線分 \(AF\) を \(11:1\) に内分する点である。

おわりに

さいごまで読んでいただきありがとうございました!

このブログは統計学を学びたい学生/社会人向けに記事を書いています。

【最新】こちらの記事がおすすめ!

>>

  • URLをコピーしました!
目次